organic compounds

24392 measured reflections

 $R_{\rm int} = 0.035$

3611 independent reflections

2817 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-4,4,4-Trifluoro-2,3-diphenylbut-2enal

Hoong-Kun Fun,^a* Shea-Lin Ng,^a Zhe Li^b and Jian-Hua Xu^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: hkfun@usm.my

Received 12 June 2007; accepted 13 June 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.074; wR factor = 0.199; data-to-parameter ratio = 16.6.

In the title compound, $C_{16}H_{11}F_3O$, the dihedral angle between the two benzene rings is 4.66 (12)°. In the crystal structure, the molecules are interlinked into columns along the *b* axis by intermolecular $C-H\cdots O$ interactions and short $O\cdots O$ contacts [2.525 (8) Å]. The crystal structure is further stabilized by weak intermolecular $C-H\cdots \pi$ interactions. The linkage between the two phenyl rings is disordered over two positions in approximately a 0.6:0.4 ratio.

Related literature

For related literature on values of bond lengths, see: Allen *et al.* (1987). For a related structure, see: van Alem *et al.* (2005);

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{11}F_{3}O\\ M_{r}=276.25\\ \text{Monoclinic, } C2/c\\ a=29.1818\ (8)\ \text{\AA}\\ b=5.8972\ (2)\ \text{\AA}\\ c=17.8356\ (6)\ \text{\AA}\\ \beta=123.485\ (3)^{\circ} \end{array}$

 $V = 2559.92 (17) Å^{3}$ Z = 8 Mo K\alpha radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 100.0 (1) K 0.53 × 0.11 × 0.08 mm

Data collection

Bruker SMART APEX II CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *T*_{min} = 0.851, *T*_{max} = 0.991

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.074$	H atoms treated by a mixture of
$wR(F^2) = 0.199$	independent and constrained
S = 1.07	refinement
3611 reflections	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
217 parameters	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C11-C16 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5A\cdotsO1B^{i}$	0.93	2.56	3.491 (4)	175
$C13-H13A\cdots O1B^{ii}$	0.93	2.50	3.375 (4)	158
$C12-H12A\cdots O1A^{i}$	0.93	2.58	3.506 (5)	178
$C2-H2A\cdots Cg1^{iii}$	0.93	2.92	3.668 (3)	139
$C4-H4A\cdots Cg2^{iv}$	0.93	2.90	3.662 (2)	141
$C15 - H15A \cdots Cg1^{v}$	0.93	2.91	3.618 (2)	134

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - 1, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y + 1, z - \frac{1}{2}$; (v) $x, -y + 2, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2389).

References

- Alem, K. van, Belder, G., Lodder, G. & Zuilhof, H. (2005). J. Org. Chem. 70, 179–190.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o3255 [doi:10.1107/S1600536807028966]

(E)-4,4,4-Trifluoro-2,3-diphenylbut-2-enal

H.-K. Fun, S.-L. Ng, Z. Li and J.-H. Xu

Comment

The photochemistry of α, α, α -trifluoroacetophenone is of continuing research interest (van Alem *et al.*, 2005). In continuation of our recent work on photoinduced reactions of ketones with alkynes, the title compound, (I), was obtained by the reaction of photoexcited α, α, α -trifluoroacetophenone with trimethylsilylphenylethyne. A crystallographic analysis of (I) was carried out to elucidate its structure.

Bond lengths and angles in (I) display normal values (Allen *et al.*, 1987). The dihedral angle between the C1—C6 and C11—C16 benzene rings is 4.66 (12)°. The torsion angle of C9—C7A—C8A—C10 and C9—C7B—C8B—C10 are 176.1 (3) and -175.5 (2)°, respectively. The linkage between the two phenyl rings is disordered over two positions.

In the crystal structure, the molecules are interconnected into columns along the *b* axis by intermolecular C13—H13A···O1B and C5—H5A···O1B interactions (Figure 2 and Table 1) together with intermolecular C12—H12A···O1A interactions (Table 1) and short O1A···O1A (-x, y, 1/2 - z) contacts [2.525 (8) Å] (Figure 3). In addition, the crystal structure is further stabilized by C—H··· π interactions involving the C1—C6 (centroid *Cg*1) and C11—C16 (centroid *Cg*2) ring (Table 1).

Experimental

The title compound was synthesized by a photo-induced reaction between α, α, α -trifluoroacetophenone (0.05*M*) and an excess amount of 1-phenyl-2-trimethyl-silylacetylene (0.2*M*) in a acetonitrile solution. The title compound was isolated using silica gel column chromatography. Single crystal suitable for X-ray diffraction analysis were obtained by slow evaporation of the solvents from a petroleum ether-ethyl acetate solution (V:V = 2:1).

Refinement

The H atoms on C10 were located in a difference map and refined isotropically. The remaining H atoms were positional geometrically and refined as riding, with C—H = 0.93Å and $U_{iso}(H) = 1.2 U_{eq}(C)$. The ratio of the refined occupancies for the major and minor components of the disordered linkage of C7B/C8B/O1B and C7A/C8A/O1A are 0.614 (4): 0.386 (4).

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Both disorder components are shown.

Fig. 2. Packing of the major component of the crystal structure of (I), viewed down the b axis. Dashed lines indicate intermolecular C—H···O interactions.

Fig. 3. Packing of the minor component of the crystal structure of (I), viewed down the b axis. Dashed lines indicate intermolecular C—H···O interactions and short O···O contact.

(E)-4,4,4-Trifluoro-2,3-diphenylbut-2-enal

Crystal data	
C ₁₆ H ₁₁ F ₃ O	$F_{000} = 1136$
$M_r = 276.25$	$D_{\rm x} = 1.434 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 6048 reflections
<i>a</i> = 29.1818 (8) Å	$\theta = 1.7 - 29.7^{\circ}$
<i>b</i> = 5.8972 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 17.8356 (6) Å	T = 100.0 (1) K
$\beta = 123.485 \ (3)^{\circ}$	Neddle, colourless
$V = 2559.92 (17) \text{ Å}^3$	$0.53 \times 0.11 \times 0.08 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEX II CCD area-detector diffractometer	3611 independent reflections
Radiation source: fine-focus sealed tube	2817 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 29.7^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.7^{\circ}$
ω scans	$h = -40 \rightarrow 40$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -8 \rightarrow 8$
$T_{\min} = 0.851, T_{\max} = 0.991$	$l = -24 \rightarrow 24$
24392 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.074$	H atoms treated by a mixture of independent and constrained refinement
$P(T^2) = 0.100$	$w = 1/[\sigma^2(F_0^2) + (0.077P)^2 + 6.0256P]$
WR(F) = 0.199	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{max} < 0.001$
3611 reflections	$\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$
217 parameters	$\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	0.18069 (11)	0.9487 (5)	0.23530 (19)	0.0464 (7)	
H1A	0.1880	1.0725	0.2726	0.056*	
C2	0.20283 (8)	0.9398 (4)	0.18402 (14)	0.0290 (4)	
H2A	0.2253	1.0566	0.1872	0.035*	
C3	0.19152 (8)	0.7565 (4)	0.12787 (12)	0.0265 (4)	
H3A	0.2062	0.7511	0.0929	0.032*	
C4	0.15853 (8)	0.5809 (4)	0.12336 (13)	0.0267 (4)	
H4A	0.1510	0.4581	0.0855	0.032*	
C5	0.13670 (9)	0.5889 (4)	0.17546 (15)	0.0349 (5)	
H5A	0.1148	0.4709	0.1731	0.042*	
C6	0.14771 (11)	0.7744 (5)	0.23137 (18)	0.0509 (8)	
C7A	0.1405 (2)	0.7075 (8)	0.3129 (3)	0.0206 (11)	0.386 (4)
C8A	0.0984 (2)	0.8206 (8)	0.3060 (3)	0.0211 (11)	0.386 (4)
C7B	0.12592 (13)	0.7038 (5)	0.3454 (2)	0.0219 (7)	0.614 (4)
C8B	0.11472 (13)	0.8185 (5)	0.2723 (2)	0.0211 (7)	0.614 (4)
С9	0.17483 (9)	0.5436 (4)	0.39318 (14)	0.0302 (4)	
F1	0.21769 (8)	0.5581 (4)	0.38942 (15)	0.0710 (6)	
F2	0.15724 (7)	0.3293 (3)	0.37303 (13)	0.0622 (5)	
F3	0.19211 (10)	0.5757 (4)	0.47726 (12)	0.0731 (6)	
C10	0.06815 (8)	0.9881 (4)	0.23205 (13)	0.0256 (4)	
H10A	0.070 (3)	1.000 (13)	0.174 (4)	0.023 (16)*	0.386 (4)
H10B	0.0408 (14)	0.983 (7)	0.252 (2)	0.013 (8)*	0.614 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

OlA	0.03311 (17)	1.1142 (8)	0.2254 (3)	0.0326 (11)	0.386 (4)
O1B	0.06237 (11)	1.1301 (5)	0.17911 (18)	0.0350 (7)	0.614 (4)
C11	0.08796 (12)	0.7462 (6)	0.37994 (18)	0.0550 (9)	
C12	0.05262 (9)	0.5710 (4)	0.36590 (15)	0.0345 (5)	
H12A	0.0471	0.4526	0.3273	0.041*	
C13	0.02536 (8)	0.5724 (4)	0.40948 (14)	0.0288 (4)	
H13A	0.0016	0.4546	0.4002	0.035*	
C14	0.03350 (8)	0.7491 (4)	0.46699 (13)	0.0296 (4)	
H14A	0.0153	0.7487	0.4964	0.036*	
C15	0.06837 (9)	0.9249 (4)	0.48076 (14)	0.0320 (5)	
H15A	0.0737	1.0434	0.5192	0.038*	
C16	0.09546 (13)	0.9235 (5)	0.43669 (18)	0.0527 (8)	
H16A	0.1188	1.0425	0.4453	0.063*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0506 (14)	0.0514 (16)	0.0622 (15)	-0.0278 (12)	0.0469 (13)	-0.0355 (13)
C2	0.0296 (9)	0.0292 (11)	0.0369 (10)	-0.0059 (8)	0.0239 (9)	-0.0039 (8)
C3	0.0277 (9)	0.0340 (11)	0.0241 (8)	0.0014 (8)	0.0183 (8)	0.0018 (8)
C4	0.0313 (10)	0.0286 (10)	0.0240 (9)	-0.0014 (8)	0.0177 (8)	-0.0035 (7)
C5	0.0420 (12)	0.0402 (13)	0.0352 (10)	-0.0185 (10)	0.0293 (10)	-0.0141 (9)
C6	0.0582 (15)	0.0696 (19)	0.0547 (14)	-0.0396 (14)	0.0500 (13)	-0.0387 (14)
C7A	0.027 (2)	0.018 (2)	0.021 (2)	0.0024 (19)	0.016 (2)	0.0051 (18)
C8A	0.029 (2)	0.018 (2)	0.020 (2)	-0.005 (2)	0.016 (2)	-0.0026 (18)
C7B	0.0271 (15)	0.0206 (15)	0.0241 (14)	0.0004 (12)	0.0181 (13)	-0.0006 (12)
C8B	0.0265 (15)	0.0179 (15)	0.0251 (14)	-0.0057 (12)	0.0181 (13)	-0.0045 (12)
C9	0.0357 (11)	0.0296 (11)	0.0329 (10)	0.0063 (8)	0.0236 (9)	0.0053 (8)
F1	0.0742 (12)	0.0783 (14)	0.1068 (16)	0.0048 (10)	0.0791 (13)	0.0040 (11)
F2	0.0612 (10)	0.0260 (8)	0.0837 (13)	0.0030 (7)	0.0300 (9)	0.0034 (8)
F3	0.1158 (16)	0.0815 (14)	0.0529 (10)	-0.0030 (12)	0.0660 (12)	-0.0016 (9)
C10	0.0293 (9)	0.0258 (10)	0.0268 (9)	-0.0001 (8)	0.0186 (8)	0.0001 (7)
O1A	0.039 (2)	0.032 (2)	0.032 (2)	0.0098 (17)	0.0223 (18)	0.0025 (17)
O1B	0.0350 (14)	0.0308 (16)	0.0430 (15)	0.0028 (11)	0.0239 (12)	0.0114 (11)
C11	0.0686 (17)	0.077 (2)	0.0508 (14)	-0.0466 (16)	0.0525 (14)	-0.0370 (14)
C12	0.0376 (11)	0.0403 (13)	0.0352 (10)	-0.0130 (9)	0.0260 (9)	-0.0144 (9)
C13	0.0293 (9)	0.0304 (11)	0.0320 (10)	-0.0040 (8)	0.0201 (8)	0.0028 (8)
C14	0.0303 (10)	0.0387 (12)	0.0294 (9)	0.0043 (9)	0.0224 (8)	0.0060 (8)
C15	0.0421 (11)	0.0327 (11)	0.0278 (9)	-0.0030 (9)	0.0235 (9)	-0.0039 (8)
C16	0.0775 (19)	0.0587 (18)	0.0482 (14)	-0.0445 (15)	0.0514 (15)	-0.0287 (13)

Geometric parameters (Å, °)

C1—C2	1.382 (3)	C9—F1	1.292 (2)
C1—C6	1.383 (3)	C9—F3	1.306 (3)
C1—H1A	0.9300	C9—F2	1.337 (3)
C2—C3	1.384 (3)	C10—O1B	1.202 (3)
C2—H2A	0.9300	C10—O1A	1.216 (4)
C3—C4	1.386 (3)	C10—H10A	1.07 (6)

С3—НЗА	0.9300	C10—H10B	1.04 (3)
C4—C5	1.387 (3)	O1A—H10B	0.87 (4)
C4—H4A	0.9300	O1B—H10A	0.82 (7)
C5—C6	1.393 (3)	C11—C12	1.382 (3)
С5—Н5А	0.9300	C11—C16	1.386 (3)
C6—C8B	1.517 (3)	C12—C13	1.385 (3)
C6—C7A	1.629 (5)	C12—H12A	0.9300
C7A—C8A	1.343 (7)	C13—C14	1.387 (3)
С7А—С9	1.551 (5)	C13—H13A	0.9300
C8A—C10	1.486 (5)	C14—C15	1.376 (3)
C8A—C11	1.571 (5)	C14—H14A	0.9300
C7B—C8B	1.340 (4)	C15—C16	1.389 (3)
С7В—С9	1.521 (4)	C15—H15A	0.9300
C7B—C11	1.556 (4)	C16—H16A	0.9300
C8B-C10	1.512 (4)		
C2—C1—C6	120.3 (2)	F1—C9—C7A	93.6 (2)
C2—C1—H1A	119.9	F3—C9—C7A	127.8 (3)
C6—C1—H1A	119.9	F2—C9—C7A	112.6 (2)
C1—C2—C3	119.80 (19)	O1BC10O1A	75.6 (3)
C1—C2—H2A	120.1	O1B—C10—C8A	156.5 (3)
C3—C2—H2A	120.1	O1A-C10-C8A	123.3 (3)
C2—C3—C4	120.40 (17)	O1B—C10—C8B	122.2 (2)
С2—С3—НЗА	119.8	O1A-C10-C8B	159.8 (3)
С4—С3—НЗА	119.8	O1A-C10-H10A	111 (4)
C3—C4—C5	119.80 (18)	C8A—C10—H10A	126 (4)
C3—C4—H4A	120.1	C8B-C10-H10A	90 (4)
С5—С4—Н4А	120.1	O1B-C10-H10B	119 (2)
C4—C5—C6	119.76 (19)	C8A—C10—H10B	83 (2)
C4—C5—H5A	120.1	C8B-C10-H10B	119 (2)
С6—С5—Н5А	120.1	H10A—C10—H10B	142 (4)
C1—C6—C5	119.94 (19)	C10—O1A—H10B	57 (2)
C1—C6—C8B	117.2 (2)	C10-01B-H10A	60 (4)
C5—C6—C8B	121.5 (2)	C12—C11—C16	119.9 (2)
C1—C6—C7A	124.3 (3)	C12—C11—C7B	115.5 (2)
C5—C6—C7A	110.9 (3)	С16—С11—С7В	123.4 (2)
C8A—C7A—C9	119.2 (4)	C12-C11-C8A	121.8 (2)
C8A—C7A—C6	111.1 (4)	C16—C11—C8A	112.1 (3)
C9—C7A—C6	129.7 (3)	C11—C12—C13	119.7 (2)
C7A—C8A—C10	118.5 (4)	C11-C12-H12A	120.1
C7A—C8A—C11	112.0 (4)	C13—C12—H12A	120.1
C10-C8A-C11	129.5 (4)	C12-C13-C14	120.14 (19)
C8B—C7B—C9	120.6 (3)	C12—C13—H13A	119.9
C8B—C7B—C11	117.4 (3)	C14—C13—H13A	119.9
C9—C7B—C11	122.1 (2)	C15-C14-C13	120.37 (17)
C7B—C8B—C10	117.9 (3)	C15—C14—H14A	119.8
C7B—C8B—C6	120.2 (3)	C13—C14—H14A	119.8
C10—C8B—C6	121.9 (3)	C14—C15—C16	119.4 (2)
F1—C9—F3	106.2 (2)	C14—C15—H15A	120.3
F1—C9—F2	106.72 (19)	C16-C15-H15A	120.3

F3—C9—F2	107.1 (2)		C11—C16—C15		120.5 (2)
F1—C9—C7B	124.5 (2)		C11—C16—H16A		119.8
F3—C9—C7B	101.7 (2)		C15-C16-H16A		119.8
F2—C9—C7B	109.5 (2)				
C6—C1—C2—C3	0.6 (4)		C8A—C7A—C9—F3		-42.2 (6)
C1—C2—C3—C4	-0.6 (3)		C6—C7A—C9—F3		136.4 (4)
C2—C3—C4—C5	0.0 (3)		C8A—C7A—C9—F2		94.4 (4)
C3—C4—C5—C6	0.6 (4)		C6—C7A—C9—F2		-87.0 (4)
C2—C1—C6—C5	0.0 (5)		С8А—С7А—С9—С7В		2.8 (3)
C2-C1-C6-C8B	-166.5 (3)		С6—С7А—С9—С7В		-178.6 (7)
C2-C1-C6-C7A	153.0 (3)		C7A-C8A-C10-O1B		-33.0 (10)
C4—C5—C6—C1	-0.5 (4)		C11—C8A—C10—O1B		148.6 (6)
C4—C5—C6—C8B	165.4 (3)		C7A-C8A-C10-O1A		-172.6 (4)
C4—C5—C6—C7A	-157.0 (3)		C11—C8A—C10—O1A		8.9 (6)
C1—C6—C7A—C8A	90.6 (5)		C7A—C8A—C10—C8B		1.0 (3)
C5—C6—C7A—C8A	-114.2 (4)		C11—C8A—C10—C8B		-177.4 (6)
C8B—C6—C7A—C8A	1.1 (3)		C7B-C8B-C10-O1B		164.3 (3)
C1—C6—C7A—C9	-88.1 (5)		C6-C8B-C10-O1B		-16.6 (4)
C5—C6—C7A—C9	67.1 (5)		C7B-C8B-C10-O1A		15.1 (10)
C8B—C6—C7A—C9	-177.6 (7)		C6-C8B-C10-O1A		-165.8 (8)
C9—C7A—C8A—C10	176.1 (3)		C7B—C8B—C10—C8A		-0.5 (3)
C6—C7A—C8A—C10	-2.7 (6)		C6-C8B-C10-C8A		178.6 (5)
C9—C7A—C8A—C11	-5.2 (6)		C8B—C7B—C11—C12		107.9 (3)
C6—C7A—C8A—C11	176.0 (3)		C9—C7B—C11—C12		-73.6 (4)
C9—C7B—C8B—C10	-175.5 (2)		C8B—C7B—C11—C16		-84.8 (4)
C11—C7B—C8B—C10	3.1 (4)		C9—C7B—C11—C16		93.7 (4)
C9—C7B—C8B—C6	5.4 (4)		C8B—C7B—C11—C8A		-1.8 (3)
C11—C7B—C8B—C6	-176.1 (2)		C9—C7B—C11—C8A		176.7 (5)
C1—C6—C8B—C7B	-113.5 (4)		C7A—C8A—C11—C12		-90.1 (5)
C5—C6—C8B—C7B	80.2 (4)		C10—C8A—C11—C12		88.5 (5)
C7A—C6—C8B—C7B	-1.7 (3)		C7A—C8A—C11—C16		117.7 (4)
C1—C6—C8B—C10	67.4 (4)		C10—C8A—C11—C16		-63.8 (5)
C5-C6-C8B-C10	-98.9 (4)		C7A—C8A—C11—C7B		1.1 (3)
C7A-C6-C8B-C10	179.2 (5)		C10—C8A—C11—C7B		179.6 (6)
C8B—C7B—C9—F1	24.0 (4)		C16—C11—C12—C13		-0.7 (5)
C11—C7B—C9—F1	-154.5 (2)		C7B—C11—C12—C13		167.1 (2)
C8B—C7B—C9—F3	143.1 (3)		C8A—C11—C12—C13		-150.9 (3)
C11—C7B—C9—F3	-35.4 (3)		C11—C12—C13—C14		0.0 (4)
C8B—C7B—C9—F2	-103.9(3)		C12—C13—C14—C15		0.4 (3)
C11—C7B—C9—F2	77.7 (3)		C13—C14—C15—C16		-0.2 (3)
C8B—C7B—C9—C7A	-2.1 (4)		C12—C11—C16—C15		1.0 (5)
C11—C7B—C9—C7A	179.4 (5)		C7B—C11—C16—C15		-165.8 (3)
C8A—C7A—C9—F1	-155.8 (4)		C8A—C11—C16—C15		153.9 (3)
C6—C7A—C9—F1	22.7 (4)		C14—C15—C16—C11		-0.6 (4)
Hydrogen-bond geometry (Å, °)					
<i>D</i> —H…A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5—H5A···O1B ⁱ		0.93	2.56	3.491 (4)	175

C13—H13A····O1B ⁱⁱ	0.93	2.50	3.375 (4)	158
C12—H12A···O1A ⁱ	0.93	2.58	3.506 (5)	178
C2—H2A…Cg1 ⁱⁱⁱ	0.93	2.92	3.668 (3)	139
C4—H4A…Cg2 ^{iv}	0.93	2.90	3.662 (2)	141
C15—H15A···Cg1 ^{v}	0.93	2.91	3.618 (2)	134

Symmetry codes: (i) x, y-1, z; (ii) -x, y-1, -z+1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iv) x, -y+1, z-1/2; (v) x, -y+2, z+1/2.

